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INTRODUCTION

Quantitative analysis of amino acids is central to applications ranging
from biopharmaceutical development to clinical diagnostics, food
sciences, and metabolomics. These applications require analytical
methods capable of profiling amino acids with precision across a wide Column
dynamic range, maintaining inter-laboratory reproducibility, and

EXPERIMENTAL

Chromatographic Conditions for Separation of 21 Natural Amino Acids

Vaast (100 mm x 2.1 mm i.d., 1.7 um) Part #: 72U93
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chemistry, and are prone to inter-lab variability ™. Screening and optimization were performed on a Waters Acquity I-Class

UPLC + PDA + QDa Performance MS. The MS detector was set with the

HILIC-based LC-MS approaches without derivatization provide direct following parameters:

analysis and faster workflows. These methods simplify sample
preparation and are increasingly used in targeted and untargeted
metabolomics. Yet they can suffer from matrix effects, limited
robustness across platforms, and a lack of chiral resolution, leaving
an unmet need in standardization and comparability?

Despite decades of refinement, no single chromatographic method
currently provides comprehensive, reproducible analysis of all amino
acids within a single run. Inter-laboratory reproducibility remains a
major challenge, with even validated methods showing variation when
applied across sites, instruments, or software platforms7. This
compromises the reliability of large-scale or multi-center datasets.

To address these limitations, the Vaast column from Daicel was
developed as a unified solution for amino acid analysis. The method
enables the simultaneous separation of 21 natural amino acids (20
proteinogenic plus homoserine) within a single LC-MS run of less than
five minutes. Vaast eliminates multiple kits, avoids cumbersome
derivatization, and provides consistent reproducibility across
laboratories and instrument platforms. Importantly, it allows
simultaneous resolution of chiral and achiral amino acids in one
standardized workflow, offering a simplified yet comprehensive
analytical approach®,

» Mode: ESI positive (ESI+)  Capillary voltage: 1.0 kV
« Cone voltage: 15V » Probe temperature: 600 °C
» Sampling rate: 15 points/sec e Gain:1

All mobile phases and reagents were prepared according to the
Derivatization Protocol and Mobile Phase Preparation Protocol (available
as Supplementary Information).

DISCUSSION

The 21 derivatized AQC-amino acids listed in Table 1 were prepared
according to the standard procedure outlined in the Derivatization
Protocol and analyzed using Vaast according to the method outlined
in the experimental section. As demonstrated in Table 1, in all cases,
the corresponding D and L isomers of each amino acid pair (with the
exception of glycine with is not chiral), were all more than baseline
resolved. In all cases, except for Proline, the D enantiomer eluted first,
with all amino acid pairs eluting in less than 5 minutes (Figure 1). One
very important observation emerged from this analysis: Vaast's ability
to handle a very diverse set of amino acids -spanning hydrophobic,
The 21 derivatized AQC-amino acids listed in Table 1 were prepared
aromatic, polar, acidic, and basic classes- in a single run. This



versatility enables comprehensive enantiomeric and compositional profiling in one step, eliminating the need for multiple columns or separate chiral
and achiral workflows.
1.Leucine, isoleucine, and valine, all branched chain amino acids - despite their similar m/z values, were baseline resolved, both from their D/L
pairs, but also from each other.
2.Phenylalanine, tyrosine, and tryptophan - aromatic amino acids, which are structurally related with only minor functional differences, were
baseline resolved from their D/L pairs, and from each other.
3.Aspartic acid and glutamic acid, as well as asparagine and glutamine differing only by a single methylene group in their side chains, were
resolved, confirming the column’s fine selectivity for subtle structural variations.
4.Proline, - a secondary amine - often requiring its own separate derivatization and method, was resolved.

AQC-AA Molecular weight (g/mol) RRT1 RRT2 Rs
Isoleucine 3013 0.57 (D) 0.82 (L) 8.5
Valine 287.3 0.60 (D) 0.87 (L) 8.6
Leucine 3013 0.62 (D) 0.76 (L) 5.0
Proline 285.3 0.68 (L) 0.75 (D) 2.1
Phenylalanine 3354 0.75 (D) 0.94 (L) 7.9
Methionine 3194 0.78 (D) 0.93 (L) 6.1
Alanine 2593 0.80 (D) 0.92 (L) 4.6
Threonine 289.3 0.86 (D) 1.09 (L) 7.9
Homoserine 289.3 0.91(D) 1.03 (L) 6.0
Tryptophan 374.4 0.92 (D) 1.27 (L) 1.0
Tyrosine 3514 0.93 (D) 1.07 (L) 7.1
Cysteine 3482 0.96 (D) 116 (L) 2.6
Serine 275.3 0.96 (D) 116 (L) 9.2
Glutamine 3163 0.98 (D) 1.07 (L) 5.1
Glycine 2452 1.00 Achiral
Asparagine 302.3 1.02 (D) 1.25 (L) 8.7
Lysine 486.5 113 (D) 1.25 (L) 4.2
Histidine 3253 1.14 (D) 143 (L) 7.2
Glutamic Acid 317.3 1.17 (D) 1.25 (L) 29
Aspartic Acid 3033 119 (D) 1.29 (L) 24
Arginine 344.4 1.27 (D) 173 (L) 8.4

Table 1: Relative retention times of AQC-AA derivatives analysed on Vaast column, compared with AQC-Gly, under gradient conditions detailed
in Experimental section. Molecular masses of the AQC-derivatives when using MS-detection. RRT = Relative retention time = RT/ R gyne
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CONCLUSIONS
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A A AQC-Trp comprehensive coverage in a single validated method. As
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